Клапанный механизм двигателя устройство работа и регулировка

По способу очистки воздуха фильтры делятся на инерционно-масляные и сухие.

Инерционно-масляный фильтр  состоит из корпуса с масляной ванной, крышки, воздухозаборника и фильтрующего элемента из синтетического материала. При работе двигателя воздух, проходя через кольцевую щель внутри корпуса и, соприкасаясь с поверхностью масла, резко изменяет направление движения. Вследствие этого крупные частицы пыли, находящиеся в воздухе, прилипают к поверхности масла.

Далее воздух проходит через фильтрующий элемент, очищается от мелких частиц пыли и поступает в карбюратор. Таким образом, воздух проходит двухступенчатую очистку. При засорении фильтр промывают.Воздушный фильтр сухого типа состоит из корпуса, крышки, воздухозаборника и фильтрующего элемента из пористого картона. При необходимости фильтрующий элемент меняют.

Из чего изготавливают клапана

Седла клапанов изготавливаются из чугуна или стали, затем запрессовываются в головку блока цилиндров. Клапаны во время работы двигателя подвержены значительным механическим и тепловым нагрузкам, поэтому необходимо подбирать специальный сплав для изготовления детали.

Клапана для высокофорсированных двигателей должны хорошо охлаждаться, поэтому в них применяют клапаны с полым стержнем, с наполнением натрия внутри. При достижении рабочей температуры натрий плавится и начинает перетекать от тарелки клапана, к стержню равномерно распределяя тепло. Для равномерности теплопередачи и уменьшения нагара на фасках клапана применяют механизмы вращения клапана.

Назначение и принцип действия ГРМ

Работа газораспределительного механизма заключается в синхронном движении двух валов – коленчатого вала и распределительного вала. Параллельное вращение валов обеспечивает своевременное открытие и закрытие впускных и выпускных клапанов цилиндров двигателя.

Во время вращения распределительного вала его кулачки воздействуют на рычаги, которые в свою очередь передают усилие  на клапанные стержни, что и приводит к открытию клапанов.

При дальнейшем вращении распределительного вала клапаны закрываются, благодаря занятию кулачками начальной позиции.

Газораспределительный механизм в двигателе внутреннего сгорания предназначается для своевременной подачи воздушно-топливной смеси или воздуха в цилиндры и выпуска оттуда отработанных газов. Работа механизма осуществляется за счет своевременного открытия и закрытия впускных и выпускных клапанов.

Клапанный механизм двигателя устройство работа и регулировка

Рабочий процесс ГРМ основывается на синхронном движении распределительного и коленчатого вала, что обуславливает открытие и закрытие клапанов в нужный момент моторного цикла. Во время вращательного движения распредвала, кулачки надавливают на рычаги, а те на стержни клапанов, открывая их. Следующий поворот распредвала поворачивает кулачек, который занимает исходную позицию и закрывает клапан.

Классификация ГРМ

Современные автомобильные двигатели получили различные типы газораспределительных механизмов, разработка которых была основана на  опыте эксплуатации более ранних моделей.

Классификация ГРМ по четырем основным различиям:

  1. По расположению распределительного вала:

— верхнеерасположение ГРМ;

— нижнеерасположение ГРМ;

     — одинраспредвал (SOHC — Single OverHead Camshaft)

     — двараспредвала (DOHC — Double OverHead Camshaft);

3. По числу клапанов – 2, 3, 4, 5;

— цепной привод от  коленчатого вала;

— шестеренчатый привод от коленчатого вала;

 — ременной привод коленчатого вала.

Чаще всего встречается верхнее расположение распределительного вала в головке двигателя – это объясняется простотой конструкции и эффективностью работы, уменьшением массы механизма. Открытие и закрытие клапанов в газораспределительном механизме такого типа осуществляется с помощью толкателей.

Автомобили с цепным приводом ГРМ

Список современных автомобилей некоторых марок с цепной передачей газораспределительного механизма:

  1. Мазда 6.
  2. Шкода Рапид.
  3. Тойота Авенсис.
  4. Ниссан. Например, двигатель SR20det имеет цепь, но, если цепь вовремя не заменить, то клапана погнутся о поршни или клапан сломается, перевернется в цилиндре и пробьет поршень.
  5. Хонда.
  6. Мерседес-Бенц.
  7. Ауди.
  8. БМВ.
  9. Волга, Москвич, классические модели Ваз.
Читать далее:  Почему не падают обороты двигателя на холостом ходу: особенности

корпуса с крышкой, смотрового люка, зубчатого колеса привода, вала регулятора с ведомым зубчатым колесом и державкой грузов (ролики грузов упираются в подвижную муфту с шарикоподшипником и пятой), рычага управления рейкой топливного насоса, который крепится на одной оси с пятой (рычаг тягой соединен одним концом с рейкой, а другим концом посредством пальца с кулисой).

Скоба управления кулисой может занимать два положения: «Работа» и «Стоп». В состав регулятора также входят силовой и двуплечий рычаги управлениярегулятором, болты ограничения максимальной и минимальной частоты вращения коленчатого вала.При неработающем двигателе скоба управления кулисой находится в положении «Стоп».

После пуска двигателя грузы под действием центробежных сил расходятся и перемещают подвижную муфту от себя. Силовой и двуплечий рычаги поворачиваются против часовой стрелки, преодолевая усилие силовой пружины, одновременно рычаг управления рейкой перемещает рейку в сторону уменьшения подачи топлива.

Перемещение рычажной системы продолжается до тех пор, пока центробежные силы грузов не уравновесятся силовой пружиной регулятора.Необходимую частоту вращения коленчатого вала устанавливает водитель, нажимая на педаль подачи топлива. Установившаяся частота вращения коленчатого вала автоматически поддерживается регулятором следующим образом.

При уменьшении нагрузки на двигатель частота вращения коленчатого вала возрастает, так как в цилиндры поступает то же количество топлива. Управления кулисой может занимать два положения: «Работа» и «Стоп». В состав регулятора также входят силовой и двуплечий рычаги управления регулятором, болты ограничения максимальной и минимальной частоты вращения коленчатого вала.

Принцип работы

Циркуляцию жидкости в системе охлаждения осуществляют по двум кругам: малому и большому.

По малому кругу жидкость циркулирует при пуске холодною двигателя, обеспечивая его быстрый прогрев в такой последовательности: жидкостной насос — распределительные трубы — рубашка охлаждения блока цилиндров — рубашка охлаждения головки блока цилиндров — верхний патрубок термостата (клапан закрыт) — перепускной шланг приемная полость жидкостного насоса.

По большому кругу жидкость циркулирует при прогретом двигателе: жидкостной насос (как и по малому кругу) — термостат (клапан открыт) — резиновый шланг — патрубок радиатора — верхний бачок радиатора — сердцевина радиатора — нижний бачок радиатора — патрубок — шланги — приемная полость жидкостного насоса.

  Ремонт водяного насоса

Технология ремонта водяного насоса

Технология ремонта водяного насоса

 Неисправности водяного насоса

Как определить неисправности водяного насоса

Неисправности водяного насоса.

Неисправности помпы.

Признаки и причины неисправностей

водяного насоса.

Переохлаждение двигателя сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания, следствием чего является повышенный расход топлива. Конденсация паров воды в картерной полости холодного двигателя и на стенках цилиндров приводит к коррозии.

Радиатор является теплообменником системы охлаждения, где поступающая из двигателя жидкость передаст теплоту потоку воздуха.

Радиатор состоит из верхнего и нижнего бачков, соединенных между собой трубками, образующими его охлаждающую решетку (сердцевину ра­диатора). Верхний бачок радиатора имеет наливную горловину с пробкой, а нижний — сливной кран. В наливную горловину впаяна пароотводная трубка, соединенная с расширительным бачком.

Клапанный механизм двигателя устройство работа и регулировка

Пароотводная трубка за­глублена в радиатор, где отводимые пары конденсируются. К верхнему и нижнему бачкам припаяны боковые стойки. Стойки и пластина образуют каркас радиатора. Сердцевина радиатора состоит из нескольких рядов тру­бок, впаянных в верхний и нижний бачки. К трубкам крепятся гонкие ох­лаждающие пластины или гофрированные ленты, изготовленные из лату­ки, алюминия или красной меди.

Обслуживание системы охлаждения

обслуживание системы охлаждения

Защита радиатора от засорения,

установка расширительного бачка,

доработка пробки радиатора

системы ихлаждения

Пробка заливной горловины в закрытых системах жидкостного охлажде­ния имеет два предохранительных клапана с уплотнительными резиновы­ми прокладками и пружинами. Паровой клапан регулируют на избыточное давление (0,145—0,160 МПа), воздушный клапан открывается при падении давленияв системе против атмосферного не более чем на 0,01 МПа.

При нормальном функционировании клапанов система охлаждения только кратковременно может сообщаться с окружающей средой или поло­стью расширительного бачка.

Жалюзи устанавливаются перед радиатором, с их помощью регулирует­ся количество воздуха, проходящего через сердцевину радиатора. Жалюзи изготовляются в виде набора вертикальных иди горизонтальных пластин — створок из оцинкованного железа, которые объединены общей рамкой и снабжены шарнирным устройством, обеспечивающим одновременный или групповой поворот их вокруг своей оси.

Жидкостной насос создаст в системе охлаждения принудительную цир­куляцию жидкости. Применяют одноступенчатые жидкостные насосы цен­тробежного типа. Привод насоса, как правило, работает от шкива коленча­того вала посредством клиноременной передачи.

Жидкостной насос состоит из корпуса, вала привода с крыльчаткой, ступицы для крепления шкива привода, самоподжимной уплотняющей манжеты, двух латунных обойм, резиновой манжеты» уплотняющей шайбы ипружинного кольца. Вал насоса вращается на двух шарикоподшипниках.

Центробежные насосы одноступенчатого типа, рассчитанные на давле­ние и 0,04 —0,1 МПа, отличаются компактностью и обеспечивают доста­точную подачу жидкости при сравнительно больших зазорах между крыль­чаткой и стенками корпуса.

Вентилятор служит для создания воздушного потока, проходящего че­рез сердцевину радиатора, для охлаждения жидкости, протекающей по трубкам.

Почему перегревается двигатель автомобиля?

Причины перегрева двигателя,

неисправности системы охлаждения

Обслуживание системы охлаждения гарантия нормальной работы вашего двигателя.

а — впуск в цилиндр горючей смеси; б — сжатие горючей смеси; в — расширение газов; г- выпуск отработавших газов; 1 — коленчатый вал; 2 — распределительный вал; 3-поршень; 4 — цилиндр; 5— впускной трубопровод; 6 — карбюратор; 7— впускной клапан; 8 — свеча зажигания; 9 — выпускной клапан; 10 — выпускной трубопровод; 11-шатун; 12 — поршневой палец; 13 — поршневые кольца

Работу детали можно описать несколькими этапами:

  1. Кулачок распредвала не оказывает давления на компенсатор и повернут к нему тыльной стороной, при этом между ними присутствует небольшой зазор. Плунжерная пружина внутри гидрокомпенсатора толкает плунжер из втулки. В это время под плунжером образовывается полость, которая заполняется маслом под давлением через совмещенный канал и отверстие в корпусе. Объем масла набирается до нужного уровня и шариковый клапан закрывается под действием пружины. Толкатель упирается в кулачок, движение плунжера прекращается, и масляный канал перекрывается. При этом зазор исчезает.
  2. Когда кулачок начинает поворачиваться, он нажимает на гидрокомпенсатор, перемещая его вниз. За счет набранного объема масла плунжерная пара становится жесткой и передает усилие далее на клапан. Клапан под давлением открывается и в камеру сгорания поступает топливовоздушная смесь.
  3. Во время движения вниз немного масла вытекает из полости под плунжером. После того как кулачок пройдет активную фазу воздействия цикл работы повторяется вновь.
фото 3
Работа гидрокомпенсатора

Гидрокомпенсатор также регулирует зазор, возникающий вследствие естественного износа деталей ГРМ. Это простой, но в то же время сложный по исполнению механизм с точной подгонкой деталей.

Правильная работа гидравлических компенсаторов во многом зависит от давления масла в системе и от степени его вязкости. Слишком вязкое и холодное масло не сможет в нужном количестве поступить через каналы в тело толкателя. Слабое давление и протечки также снижают работоспособность механизма.

Преимущества и недостатки

Гидравлические компенсаторы позволяют избежать множества технических проблем при эксплуатации двигателя. Отпадает необходимость регулировки теплового зазора, например, с помощью шайб. Также гидротолкатели уменьшают уровень шума и ударные нагрузки. Плавная и правильная работа снижает износ деталей ГРМ.

Среди преимуществ есть и свои недостатки. Двигатели, в которых используются гидрокомпенсаторы, имеют свои особенности эксплуатации. Самый явный из них – неровная работа холодного двигателя на момент запуска. Появляются характерные стуки, которые при достижении температуры и давления исчезают. Это происходит из-за того, что при запуске давление масла недостаточное. Оно не поступает в компенсаторы, поэтому появляется стук.

Еще одним недостатком можно назвать стоимость деталей и обслуживание. Если потребуется замена, то это стоит доверить мастеру. Также гидрокомпенсаторы требовательны к качеству масла и работе всей системы смазки. Если залить некачественное масло, то это может напрямую сказаться на их работе.

Основные неисправности, возможные причины и замена

Появившийся стук говорит о неисправностях в газораспределительном механизме. Если стоят гидрокомпенсаторы, то причина может быть в них:

  • Неисправность самих гидротолкателей: выход из строя плунжерной пары или заклинивание плунжеров, заклинивание шарикового клапана, естественный износ.
  • Низкое давление масла в системе.
  • Засорение масляных каналов в головке блока цилиндров;
  • Попадание воздуха в систему смазки.

Определить неисправный компенсатор зазора обычному автолюбителю бывает достаточно трудно. Для этого, например, можно воспользоваться автомобильным стетоскопом. Достаточно прослушать каждый гидрокомпенсатор, чтобы определить неисправный по характерному стуку.

Также работоспособность гидрокомпенсаторов можно проверить, если удастся снять их с двигателя. В заполненном состоянии они не должны сжиматься. Некоторые виды можно разобрать и определить степень износа внутренних деталей.

Некачественное масло приводит к засорению масляных каналов. Исправить это можно путем замены самого масла, масляного фильтра и промывки гидрокомпенсаторов. Промыть можно специальными жидкостями, ацетоном или высокооктановым бензином. Если дело в масле, то это должно помочь устранить стук.

При замене гидравлических компенсаторов зазора нужно соблюдать некоторые нюансы:

  • Новые гидротолкатели уже заполнены масляным составом. Удалять это масло не нужно. Масло смешивается в системе смазки, и воздух не попадет в систему.
  • Нельзя ставить «пустые» компенсаторы (без масла) после промывки или разборки. Так в систему попадает воздух.
  • После установки новых гидрокомпенсаторов рекомендуется несколько раз провернуть коленчатый вал. Это делается для того, чтобы плунжерные пары пришли в рабочее состояние, и повысилось давление.
  • После замены гидротолкателей рекомендуется поменять масло и фильтр.

Чтобы гидрокомпенсаторы доставляли как можно меньше проблем при эксплуатации, нужно использовать качественное моторное масло, которое рекомендуется в руководстве по эксплуатации автомобиля. Также необходимо соблюдать регламент замены масла и фильтра. Соблюдая эти правила, гидравлические компенсаторы прослужат долго.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
AutoJiza
Adblock
detector