Механический нагнетатель двигателя

Понятие, плюсы и минусы механического нагнетателя Supercharger

Механический наддув – это процесс увеличения давление некой смеси на впуске двигателя для повышения массы горючей смеси в цилиндре для увеличения мощности относительно единицы объема двигателя.

Supercharger (cуперчарджер) также известный как компрессор Рутса — это механический нагнетатель использующий для собственного привода энергию коленчатого вала. Он является основным элементом механического наддува.

Главным функциональным плюсом cуперчарджера является то что он может закачивать воздух на минимальных оборотах, абсолютно без задержки, при этом рост силы наддува строго пропорционален оборотам двигателя.

Главным же минусом cуперчарджера является то что он обирает часть мощности двигателя на собственный привод.

На данный момент механические нагнетатели практически не используются. Их место заменили турбонагнетатели (турбокомпрессоры). За редким исключением их продалжают устанавливают на легковые автомобили, если необходимо сделать разбег по мощности, дабы не изменять конструкции двигателя.

В среднем применение механического нагнетателя обеспечивает увеличение мощности двигателя до 50%, а крутящего момента на 30%. При этом механический нагнетатель отличают существенные потери мощности двигателя из-за затрат энергии на его привод. В разных механических нагнетателях они могут составлять до 30%.

Несмотря на конструктивные различия, все механические нагнетатели обладают примерно одинаковым набором положительных и отрицательных качеств, если сравнивать их с конкурентом – турбированными компрессорами.

Обычно главный довод в пользу использования устройств обеих типов – существенно увеличение мощности мотора. И это действительно так: установив компрессор на автомобиль любой марки и модели, вы сразу почувствуете, насколько возросла его мощь. Другими словами, такой агрегат позволяет превратить маломощный силовой агрегат в его аналог с более высокими показателями литража, и это в любом случае обойдётся дешевле, чем установка более мощного двигателя.

Другое дело – что здесь нужно решить дилемму, какому типу нагнетателя отдать предпочтение, механическому или турбированному. Сразу отметим, что обе конструкции обладают набором преимуществ и недостатков, так что выбор в любом случае будет трудным. В оправдание можно сказать, что и в среде специалистов единодушного мнения на этот счёт нет.

Если судить по количественным характеристикам, то недостатков у турбокомпрессора больше. В частности, они характеризуются наличием лага – так называется временной сдвиг между началом работы мотора и компрессора. Это связано с особенностью циклов работы двигателя: выхлопным газам требуется некоторое время, чтобы достигнуть скорости, достаточной для раскрутки ротора компрессора.

Так что если вас интересует исключительно прирост мощности, причём на высоких оборотах, придётся выбирать между кулачковым и двухвинтовым нагнетателем. Если же вас интересует более стабильная работа мотора на всех режимах – лучшим выбором будет механический компрессор центробежного типа.

Ещё одним несомненным достоинством нагнетателей является простота их установки. Относительная, конечно, применительно к турбонагнетателям. Это легко объяснить – механический компрессор не требует существенной переделки двигателя и многих обслуживающих систем. С другой стороны, ему всё равно требуется место в моторном отсеке, причём такое, чтобы обеспечить отбор мощности силового агрегата.

Конструкция компрессоров не требует использования машинного масла, поэтому здесь не нужно волноваться о необходимости использования спецрежима при остановке мотора. У турбированных версий необходимо перед тем, как заглушить двигатель, подождать секунд 30, дав остыть маслу на холостом ходу.

Механический нагнетатель двигателя

Отметим, что всё же оптимальная прибавка мощности для механических нагнетателей достигается на хорошо прогретом двигателе.

Мало кто знает, но компрессоры являются неотъемлемой компонентой современных авиационных силовых установок – без них обеспечить двигатель необходимым количеством кислорода на больших высотах, где воздух сильно разрежен, не получится.

Что характерно, принцип функционирования механических нагнетателей, обеспечивающих нормальную работу авиационных моторов, идентичен автомобильным аналогам, поскольку отбор мощности тоже носит механический характер и осуществляется с головного вала авиадвигателя.

А теперь поговорим о недостатках механических компрессоров на двигатель.

Главным из них специалисты считают высокую энергозатратность: в зависимости от разновидности, они отбирают у автомобильного силового агрегата от 20 до 30% мощности. Это, в принципе, много, что объясняется не столько потерями при передаче крутящего момента от коленвала, сколько необходимостью обеспечить сжатие воздуха с необходимой силой.

Вторым минусом при установке нагнетателя можно назвать существенный рост нагрузки на мотор и все его компоненты, поскольку изначально он не рассчитан на работу в условиях более жёстких условиях. Как правило, автопроизводители, оснащающие свои модели нагнетателями, учитывают эту особенность, усиливая конструкцию силового агрегата и обеспечивая продление его ресурса до номинального с учётом существенного роста нагрузок.

В любом случае механические нагнетатели по соотношению стоимость/эффективность являются наилучшим решением для обеспечения значительного прироста мощности мотора. Самые совершенные модели способны удваивать количество лошадиных сил, и это действительно фантастический показатель. Неудивительно, что абсолютное большинство гоночных автомобилей оснащаются подобными устройствами – без них рассчитывать на хорошие результаты невозможно.

Механический наддув – это процесс увеличения давление некой смеси на впуске двигателя для повышения массы горючей смеси в цилиндре для  увеличения мощности относительно единицы объема двигателя.

На данный момент  механические нагнетатели практически не используются. Их место заменили турбонагнетатели (турбокомпрессоры). За редким исключением их продалжают устанавливают на легковые автомобили, если необходимо сделать разбег по мощности, дабы не изменять конструкции двигателя.

Применение нагнетателей на автомобилях

Применение механических нагнетателей очень востребовано как для серийных дорогих авто, так и на спортивных моделях. Компрессоры активно используются для тюнинга автомобилей. Большинство спортивных автомобилей оборудованы механическим нагнетателем или комплексным решением, которое включает в себя одновременно механический и турбокомпрессор.

Широчайшая популярность механических нагнетателей в области тюнинга  автомобильных ДВС привела к тому, что производители  компрессоров предлагают сегодня готовые комплекты для установки компрессора на атмосферный мотор. Такие комплекты включают в себя полный список необходимых элементов конструкции для доступной установки на различные модели двигателей.

Напоследок хотелось бы добавить, что серийные массовые автомобили, особенно среднего ценового сегмента, оснащаются механическими нагнетателями довольно редко.

  • Турбокомпрессор или механический нагнетатель?

    Выбор механического нагнетателя или турбокомпрессора. Конструкция, основные преимущества и недостатки решений, установка на атмосферный тюнинговый мотор.

  • TSI двигатель: что это такое?

    Моторы линейки TSI. Конструктивные особенности, преимущества и недостатки. Модификации с одним и двумя нагнетателями. Рекомендации по эксплуатации.

  • Атмосферный двигатель: что это такое?

    Чем отличается атмосферный мотор от турбодвигателя. Конструктивные особенности, мощность, особенности эксплуатации. Главные плюсы и минусы атмосферников.

  • Турбонаддув: устройство и конструктивные особенности

    Устройство турбокомпрессора, главные элементы конструкции, выбор турбины. Преимущества и недостатки бензиновых и дизельных двигателей с турбонаддувом.

  • Как работает турбина на дизельном двигателе

    Назначение и конструкция турбокомпрессора дизельного мотора. Принцип работы турбонагнетателя, особенности использования турбины на дизельном ДВС.

  • Турбированный двигатель: что это такое?

    Что представляет собой двигатель с наддувом и чем отличается от атмосферного. Основные преимущества и недостатки турбированных ДВС. Какой мотор выбрать.

К сожалению, даже механические компрессоры стоят достаточно дорого, поэтому они внедряются в серию преимущественно на авто элитного класса. Большинство спортивных моделей также работают в связке с нагнетателями. А вот гоночные болиды комплектуются комплексным вариантом, предусматривающим одновременную работу и турбокомпрессора, и механического нагнетателя.

Читать далее:  Устройство стартера ВАЗ 2109 бендикс втулка щетки какой узел лучше редукторный или обычный

Остальным автовладельцам остаётся уповать на тюнинговые мастерские, предоставляющие услуги установки готовых компрессорных комплектов на классические атмосферные двигатели. В состав подобных комплектов входит всё необходимое для установки механического нагнетателя с учётом модели авто и мотора. Кастомная установка турбокомпрессора – задача гораздо более сложная и дорогостоящая, сравнимая с покупкой нового силового агрегата, поэтому такой способ увеличения мощности мотора пока не пользуется большой популярностью.

Механический нагнетатель двигателя

Хотя многие опции, которые в недалёком прошлом были характерны только для дорогих моделей, в настоящее время плавно перекочёвывают в средний класс, о нагнетателях этого не скажешь. Мы ещё нескоро увидим их в серийных авто среднего ценового сегмента.

Использование механических компрессоров особенно популярно и среди дорогостоящих машин, и среди спортивных авто. Такие нагнетатели часто применяются в целях автотюнинга. Большая часть автомобилей спортивного типа оснащена именно механическими компрессорами или их модификациями.

Широкая популярность этих агрегатов поспособствовала тому, что многие компании сегодня предлагают полностью готовые решения для установки на атмосферный двигатель. В таких комплектах содержатся все необходимые детали, подходящие практически всем моделям силовых установок.

Но машины серийного производства, особенно средней стоимости, достаточно редко оборудуются механическими нагнетателями.

Виды конструкций механического нагнетателя делятся в зависимости от типа привода.

https://www.youtube.com/watch?v=rPDCnzhH5rc

Механический нагнетатель воздуха, устанавливаемый в автомобиль, отличается от турбины реализацией системы привода – здесь она механическая, а в качестве источника момента движения используется коленвал.

Существует несколько конструктивных решений для реализации такого способа приводного механизма:

  • прямой привод, когда вал нагнетателя устанавливается непосредственно на фланец коленвала (достаточно экзотическое решение, требующее немалой изобретательности в плане реализации такого способа);
  • ременной привод, в настоящее время самый распространённый, передающий движение от главного вала силовой установки на компрессор через ременную передачу с зубчатым, поликлиновым или плоским профилем ремня;
  • цепной привод;
  • редукторная разновидность зубчатой передачи (конусная/цилиндрическая шестерня);
  • электропривод, предполагающий применение отдельного электродвигателя.
  1. Прямое крепление нагнетателя к фланцу коленчатого вала называют прямым приводом;
  2. Ременной привод – характеризуется различными вида привода при помощи ремней. Делится на:
  3. Зубчатый
  4. Плоский
  5. Зубчатая передача через цилиндрический редуктор
  6. Цепной привод;
  7. Электрический привод подразумевает под собой использования для привода электродвигателя.

Данный вид привода естественно является наиболее энерго-затратным и требует большей мощности для аккумуляторов, но при этом он не снижает мощности двигателя.

  1. Объемные
      Кулачковый – Roots, Eaton (Рутс, Итон)
  2. Винтовой — Lysholm
  3. Центробежные

Объемные нагнетатели получили свое название из-за того что принцип их работы заключается в простой перекачке определенного объема воздуха без сжатия.

Кулачковый нагнетатель является самым первым и от того самым старым и проверенным типом наддува. Его история развития стартовала 1859 году с работы двух талантливых братьев под фамилией Рутс (Roots). Изначально его использовали как промышленный вентилятор для продувки помещений. Чуть позже он получил широкое применение из-за своей простоты.

Спустя 90 лет другому американскому ученому Итону пришло в голову, как можно усовершенствовать конструкцию. Прямозубые шестерни заменили на косозубые роторы, и воздух стал перемещаться вдоль, а не поперек как это было раньше. С того времени усовершенствование нагнетателей этого типа идет по пути увеличения количества зубчатых лопаток (косозубых роторов).

  1. Неравномерная пульсационная подача воздуха создающие периодический недостаток давления. Увеличение количества зубчатых-лопастей и изменение формы впускного и выпускного окна компрессора на треугольное, позволяет свести этот недостаток к минимуму. К тому же эти конструктивные решения помогают сделать работу компрессоров Рутса намного тише и равномернее.
  2. Во время выдавливания несжатого воздуха в трубопровод где находиться сжатый воздух, создается турбулентность, которая способствует росту температуры заряда воздуха. Это отрицательно сказывается на производительности ухудшая показатели калорийности топливной смеси из-за менее полного сгорания. Данная проблема коленчатых компрессоров решается установкой инкулера.

Развитие машиностроение позволило полностью оценить плюсы и минусы нагнетателей Рутса и получить из них максимум производительности.

  1. Компактность
  2. Простота конструкции
  3. Долговечность
  4. Эффективность на малых оборотах
  5. Низкий уровень шума

Винтовой нагнетатель (Lysholm) также как и компрессор «Рутса» относится к объемно-роторным нагнетателям и в своей работе использует те же принципы, но в отличии от своего более раннего коллеги рабочую нагрузку в нем исполняют пара роторов с взаимодополняющими профилями. На английском винтовой нагнетатель называют Lysholm в честь его изобретателя Альфреда Лисхольма, который в 1936 году изготовил и запатентовал на него права.

В современном автомобилестроении применяется несколько видов систем механического наддува, каждая из которых имеет свои конструктивные особенности и принцип нагнетания воздуха.

Система механического наддува состоит из следующих элементов:

  • механический нагнетатель (компрессор);
  • интеркулер;
  • дроссельная заслонка;
  • заслонка перепускного трубопровода;
  • воздушный фильтр;
  • датчики давления наддува;
  • датчики температуры воздуха во впускном коллекторе.

Схема работа механического наддува

Управление механическим нагнетателем осуществляется при помощи дроссельной заслонки, которая при высоких оборотах открыта. При этом заслонка трубопровода закрыта, и весь воздух поступает во впускной коллектор двигателя. Когда двигатель работает на низких оборотах, дроссельная заслонка открыта под небольшим углом, а заслонка трубопровода открыта полностью, что обеспечивает возврат части воздуха на вход компрессора.

Поступающий из нагнетателя воздух проходит через интеркулер, что снижает температуру нагнетаемого воздуха примерно на 10°C, способствуя более высокой степени его сжатия.

Ременной привод кулачкового компрессора

Передача крутящего момента от коленчатого вала к механическому компрессору может осуществляться различными способами:

  • Система прямого привода — предполагает  монтаж компрессора непосредственно на фланец коленчатого вала двигателя.
  • Ременный привод. Передача усилий реализуется при помощи ремня. Различные производители используют свои виды ремней (плоские, клиновидные или зубчатые). Системы с использованием ремня характеризуются коротким сроком службы и вероятностью возникновения проскальзывания.
  • Цепной привод. Имеет аналогичный ременному приводу принцип.
  • Шестеренчатый привод. Недостатком такой системы является повышенный шум и большие габариты.

Центробежный компрессор

Каждый тип привода наддува имеет свои эксплуатационные особенности. Всего различают три вида механических нагнетателей:

  • Центробежный нагнетатель. Самый распространенный вид механических нагнетателей. Основной рабочий элемент системы — колесо (крыльчатка), которое имеет сходную конструкцию с компрессорным колесом турбины. Оно вращается со скоростью порядка 60 000 оборотов в минуту. При этом воздух всасывается в центральную часть компрессорного колеса в режиме высокой скорости и малого давления. Пройдя через лопасти нагнетателя, воздух подается во впускной коллектор, но уже в режиме низкой скорости и высокого давления. Этот вид нагнетателя используется в комплексе с турбокомпрессорами для устранения турбоямы.
  • Винтовой нагнетатель. Представляет собой систему из двух вращающихся шнеков (винтов) конической формы. Воздух, попадая в более широкую часть, проходит по камерам компрессора и, благодаря вращению, сжимается и нагнетается в патрубок впускного коллектора. Такие системы применяются в основном на спортивных и дорогостоящих автомобилях, поскольку достаточно сложны в изготовлении. Их преимущество — высокая эффективность работы.
  • Кулачковый нагнетатель (roots). Один из первых видов механических нагнетателей. Конструктивно он представляет собой два ротора со сложным профилем сечения. Оси вращения роторов соединяются двумя одинаковыми шестернями. При вращении системы воздух перемещается между стенками корпуса и кулачками, в результате чего происходит его нагнетание во впускной трубопровод. Недостатком этой системы является образование избыточного давления, что провоцирует сбои в работе наддува. Для устранения этого явления в конструкции кулачкового нагнетателя предусматриваются либо муфта с электрическим приводом (управление с отключением нагнетателя), либо перепускной клапан (без отключения нагнетателя).
  1. Прямое  крепление нагнетателя к фланцу коленчатого вала называют прямым приводом;
  2.  Ременной привод – характеризуется различными вида привода при помощи ремней. Делится на:
  3. Зубчатый   
  4. Зубчатая передача  через цилиндрический редуктор
  5. Цепной привод;
  6. Электрический привод подразумевает под собой использования для привода электродвигателя.
  1. Объемные
    • Кулачковый – Roots, Eaton (Рутс, Итон)
    • Винтовой — Lysholm
  2. Центробежные
Читать далее:  Поэтапная инструкция по замене ремня ГРМ на Ford Fusion фото и видео

Классификация компрессоров по принципу действия

  1. воздух проходит по воздушному сужающемуся каналу и раскручивает лопасти крыльчатки.
  2. Раскрученные лопасти, ведомые центробежной силой, отбрасывают воздух на периферию кожуха.
  3. Там установлен диффузор, снижающий потери давления. Порой он имеет лопатки с регулируемым углом атаки.
  4. Через диффузор воздух выталкивается в воздушный окружающий туннель (иначе воздухосборник) в форме улитки. Данная форма не случайна. Поток воздуха движется по каналу, который изначально был узким, а под конец стал широким, тем самым меняется скорость и давление воздушной массы на необходимые.

Главный недостаток центробежного компрессора связан с базовым принципом, который приводит его в действие. Для работы ему необходимо огромная скорость вращения крыльчатки. Давление производимое компрессором равно квадрату скорости крыльчатки. Поэтому базовая скорость компрессора начинается от 40 тысяч оборотов за минуту и может достигать 200 тысяч.

Понятно что для разгона на такую скорость ремень привода должен работать крайне быстро. Из-за чего от работы этого наддува появляется очень сильный шум и детали подвергаются быстрому износу. Частично проблема шума решается установкой дополнительного мультипликатора, при этом теряя часть КПД механического нагнетателя.

Огромная нагрузка накладывает высокие требования на качество материалов и точность обработки деталей нагнетателя.

К еще одному минусу данного механического нагнетателя можно отнести его инерционное действие, проявляющий себя в отставании срабатывании. На малых оборотах его эффективность ничтожна, но при увеличении оборотов происходит быстрый скачек в мощности. Из-за данной особенности центробежный нагнетатель устанавливают на машины, где требуется высокая мощность и скорость, взамен интенсивности разгона.

Низкая цена и простота установки центробежного нагнетателя сделали его очень популярным среди автолюбителей.

Повышенный износ, шум и эффективность прибавки мощности исключительно на высоких оборотах.

  1. Механический нагнетатель двигателявоздух проходит по воздушному сужающемуся каналу  и раскручивает лопасти крыльчатки.
  2. Раскрученные лопасти, ведомые центробежной силой, отбрасывают воздух на периферию кожуха.
  3. Там установлен диффузор, снижающий потери давления. Порой он имеет лопатки с регулируемым углом атаки.
  4. Через диффузор воздух выталкивается в воздушный окружающий туннель (иначе воздухосборник) в форме улитки. Данная форма не случайна. Поток воздуха движется по каналу, который изначально был узким, а под конец стал широким, тем самым меняется скорость и давление воздушной массы на необходимые.

Главный недостаток  центробежного компрессора связан с базовым принципом, который приводит его в действие. Для работы ему необходимо огромная скорость вращения крыльчатки. Давление производимое компрессором равно квадрату скорости крыльчатки. Поэтому базовая скорость компрессора начинается от 40 тысяч оборотов за минуту и может достигать 200 тысяч.

Нагнетатель воздуха в автомобиле

Понятно что для разгона на такую скорость ремень привода должен работать крайне быстро. Из-за чего от работы этого наддува появляется очень сильный шум и детали подвергаются быстрому износу. Частично проблема шума решается установкой дополнительного мультипликатора, при этом теряя часть КПД механического нагнетателя.

По принципу действия компрессоры классифицируются на объемные и динамические.

Объемные

Это агрегаты, имеющие рабочие камеры, в которых происходит процесс сжатия газа. Сжатие происходит за счет периодического изменения объема камер, соединенных с входом (выходом) аппарата. Чтобы предотвратить обратный выход газа из агрегата, в нем устанавливают систему клапанов, которые открываются и закрываются в определенный момент наполнения и опорожнения камеры.

Динамические

В динамических компрессорах повышение давления газа происходит за счет ускорения его движения. В результате кинетическая энергия частиц газа превращается в энергию давления.

Важно! Динамические компрессоры отличаются от объемных открытой проточной частью. То есть, при зафиксированном вале его можно продуть в любом направлении.

Компрессорное оборудование объемного типа подразделяется на 3 группы:

  • мембранные;
  • поршневые;
  • роторные.

Мембранные

Механический нагнетатель двигателя

Имеют в рабочей камере эластичную мембрану, как правило, полимерную. Благодаря возвратно-поступательным движениям поршня мембрана выгибается в разные стороны. В результате движений мембраны объем рабочей камеры меняется. Клапаны в зависимости от положения мембраны либо впускают воздух в камеру, либо выпускают.

Приходить в движение мембрана может от пневматического, мембранно-поршневого, электрического или механического привода.

Важно! В мембранных аппаратах воздух или газ в процессе перемещения через рабочую камеру не контактирует с другими узлами агрегата (кроме мембраны и корпуса). Благодаря этому на выходе получают газ высокой степени чистоты.

Поршневые

Благодаря наличию кривошипно-шатунного механизма поршень совершает возвратно-поступательные движения в рабочей камере, отчего ее объем то уменьшается, то увеличивается.

Поршневые компрессоры имеют установленные на рабочей камере односторонние клапаны, перекрывающие движение воздуха в обратном направлении. Несмотря на хорошую производительность, поршневые аппараты имеют и недостатки: достаточно высокий уровень шума и заметная вибрация.

Роторные

Спиральные компрессоры (нагнетатели)

В роторных компрессорах сжатие воздуха происходит вращающимися элементами — роторами. Каждый элемент в зависимости длины и шага винта имеет постоянное значение сжатия, которое также зависит и от формы отверстия для выхода газа.

В таких компрессорах клапаны не устанавливаются. Также конструкция агрегата не содержит узлов, способных вызвать разбалансировку. Благодаря этому он может работать с высокой скоростью вращения ротора. При такой конструкции аппарата величина потока газа достигает высоких значений при небольших габаритах самого компрессора.

Роторные компрессоры подразделяются на несколько подвидов.

Безмасляные

Имеют ассиметричный профиль винта, повышающий КПД агрегата благодаря уменьшению утечек при сжатии газа. Для обеспечения синхронного встречного вращения роторов применяют внешнюю зубчатую передачу.

Во время работы роторы не соприкасаются, и смазка им не требуется, поэтому выходящий из агрегата воздух не имеет никаких примесей. Для уменьшения внутренних утечек детали агрегата и корпус изготавливаются с высокой точностью.

Также безмасляные аппараты могут быть многоступенчатыми, чтобы убрать разность температур воздуха на входе и выходе аппарата, которая ограничивает повышение давления.

Винтовые

Состоят из одного или нескольких винтов, которые находятся в зацеплении, установленных в герметичном корпусе.

Рабочее пространство создается между корпусом и винтами при их вращении. Данный вид компрессоров отличается хорошей производительностью и беспрерывной подачей воздуха.

Читать далее:  Двухвальная коробка передач устройство принцип работы и особенности

Для снижения трения между входящими в зацеп винтами, которое увеличивает износ деталей, применяется смазка. Если требуется получить сжатый воздух (газ) без примесей смазочных материалов, то применяются безмасляные винтовые аппараты.

В последних, чтобы уменьшить силу трения, подвижные детали изготавливаются из антифрикционных материалов.

Зубчатые

Данные компрессоры еще называют шестеренчатыми, поскольку их главными деталями являются шестерни. Они при работе вращаются в противоположных направлениях, создавая между зубьями и стенками корпуса рабочую камеру.

При вхождении зубьев в зацепление на стороне выходного отверстия агрегата происходит уменьшение объема камеры, вследствие чего воздух под давлением выходит через патрубок. Компрессоры данного типа нашли широкое применение в ситуациях, когда не требуется подача воздуха или газа под высоким давлением.

Спиральные

Это разновидность безмасляных компрессоров роторного типа. Спиральные аппараты также сжимают газ в объеме, который уменьшается постепенно.

Главными элементами данного аппарата являются спирали. Одна спираль закреплена неподвижно в копрусе устройства. Другая подвижная, соединена с приводом. Сдвиг по фазе между спиралями равняется 180°, благодаря чему происходит образование воздушных полостей с изменяемым объемом.

Пластинчатый компрессор имеет ротор с прорезанными пазами. В них вставлено определенное количество подвижных пластин. Как видно из рисунка, приведенного ниже, ось ротора с осью корпуса не совпадает.

Нагнетатель воздуха в автомобиле: устройство, принцип работы, 2 типа конструкции

Пластины при вращении ротора перемещаются центробежной силой от его центра к периферии и прижимаются к внутренней поверхности корпуса. В результате происходит непрерывное создание рабочих камер, ограниченных соседними пластинами и корпусами ротора и аппарата. За счет смещенных осей изменяется объем рабочих камер.

Жидкостно-кольцевые

В данных агрегатах используюется вспомогательная жидкость. В статически закрепленном корпусе аппарата устанавливается ротор с пластинами.

Конструкционные особенности данного аппарата – это смещенные оси ротора и корпуса относительно друг друга.

В корпус заливается жидкость, которая принимает форму кольца, прижимаясь к стенкам аппарата вследствие отбрасывания ее лопастями ротора.

При этом происходит ограничение рабочего пространства, наполненного газом, между жидкостным кольцом, корпусом и лопатками ротора. Объем рабочих камер изменяется посредством вращающегося ротора со смещенной осью.

Важно! Чтобы перекачиваемый газ не уносил с собой частички жидкости, в жидкостно-кольцевых аппаратах устанавливают узел сепарации, отсекающий влагу из воздуха. Также на устройствах данного типа устанавливается система, обеспечивающая подпитку рабочей камеры вспомогательной жидкостью.

Аппараты с динамическим принципом действия разделяют на осевые, центробежные и струйные. Различаются они между собой типом рабочего колеса и направлением движения потока воздуха.

На заметку! Также динамические аппараты еще называют турбокомпрессорами, поскольку конструкция их напоминает турбину.

Осевые аппараты

В осевых компрессорах поток газа движется вдоль оси вращения вала через неподвижные направляющие и подвижные рабочие колеса. Скорость потока воздуха в осевом аппарате набирается постепенно, а преобразование энергии происходит в направляющих.

Для осевых компрессоров характерны:

  • высокая скорость работы;
  • высокий КПД;
  • высокая подача потока воздуха;
  • компактные размеры.

Спиральные компрессоры (нагнетатели)

Леон Креукс в 1905 году подал заявку на патент для создания паровой машины, которая в процессе 10 лет доработки превратилась в компрессор с двумя спиральными витками, восьмью струями вместо четырех, внешней и внутренней камерой расположенными по бокам с разворотом в 180 градусов. Но на тот момент думать о массовом производстве компрессоров было очень рано.

Не было материалов способных выдержать рабочую температуру и оборудования для точной обработки деталей. Последнее является решающим фактором, поскольку любая погрешность в изготовлении деталей, качестве или структуре поверхности могла привести к значительной потери КПД, быстрой поломке всего двигателя и нагнетателя в частности. Из-за этого его применение в машиностроении началось гораздо позднее.

Компания «Volkswagen» в середине 80-х годов начала активно экспериментировать с необычными спиральными компрессорами наиболее известными как G-lader устанавливая их на модели «Golf», «Passat», «Polo», «Carrado». Хотя сейчас это направление ею уже свёрнуто, работа инженеров VW в нем никогда не будет забыта. Их наработки продолжает использовать ряд (преимущественно немецких) производителей устанавливая спиральные компрессоры в свои авто.

  1. Высокий КПД -76%
  2. Хорошие уплотнения и как следствие хорошая отдача на малых оборотах.
  3. Низки уровень шума

в середине 80-х годов начала активно экспериментировать с необычными спиральными компрессорами наиболее известными как G-lader устанавливая их на модели «Golf», «Passat», «Polo», «Carrado». Хотя сейчас это направление ею уже свёрнуто, работа инженеров VW в нем никогда не будет забыта. Их наработки продолжает использовать ряд (преимущественно немецких) производителей устанавливая спиральные компрессоры в свои авто.

Как работают компрессоры

В атмосферных автомобилях забор воздуха осуществляется по следующей схеме:

  • Опускаясь по цилиндру вниз, поршень создает разреженную среду.
  • В результате уменьшения давления воздух засасывается в камеру сгорания, где он впоследствии смешивается с топливом, сжимается поднимающимся поршнем и воспламеняется.

Здесь объем поступающего воздуха ограничивается рабочим объемом цилиндра, соответственно для моторов атмосферного типа единственным способом повышения мощности является увеличение внутреннего объема.

Двигатель с установленным компрессором

Установленный же компрессор позволяет использовать возможность воздуха сжиматься под внешним воздействием. Создаваемое его рабочими элементами давление заставляет цилиндры наполняться большим объемом воздуха, а горючая смесь, соответственно, получает больше кислорода. Добавляя к нему увеличенный объем топлива, удается получить больше энергии, которая при сгорании смеси толкает поршень и создает момент движения.

Для эффективного нагнетания воздуха рабочие элементы компрессора (роторы или крыльчатка) должны вращаться быстрее коленчатого вала. Достичь этого позволяет установка шестерней разных размеров: ведущая звездочка больше, чем приводные шестерни нагнетателя. Благодаря этому удается достичь частоты вращения в 50 000 об/мин. и более.

Дополнительно увеличить объем подаваемого в цилиндры воздуха позволяет установка интеркулера. Этот агрегат охлаждает воздух, выходящий из компрессора, в результате чего газ дополнительно сжимается.

Средний прирост мощности на автомобилях, оборудованных компрессорами, в сравнении с атмосферными аналогами составляет 35-45%, кроме того, примерно на 30% возрастает крутящий момент.

Принцип функционирования механического компрессора

Схематически работу суперчарджера представить довольно просто: благодаря использованию нагнетательного механизма он всасывает наружный воздух, подавая его под давлением во впускной коллектор. Втягивание воздушных потоков осуществляется с использованием создаваемого в коллекторе разрежения. Чтобы нагнетать воздух под давлением, вал компрессора должен вращаться быстрее коленвала, что достигается посредством применения ременной передачи (в старых моделях – цепной).

Обычно нагнетание воздушного потока осуществляется за счёт использования разницы парциальных давлений в связке двигатель – компрессор. Поскольку при сжатии температура воздуха растёт, его плотность уменьшается, что приводит к ухудшению характеристик процесса горения ТВС. Для решения температурной проблемы в конструкцию нагнетателя встраивают интеркулер, представляющий собой радиатор охлаждения воздушного иди жидкостного типа.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
AutoJiza
Adblock
detector