Как работает АКПП устройство и принцип работы коробки-автомат

Конструкция автоматической коробки передач

Начнем с плюсов. Установка автоматической трансмиссии  позволяет  водителю во время езды не использовать рычаг переключения передач, также не задействована нога для постоянного выжима сцепления при переходе на повышенную или пониженную ступень.

Другими словами, изменение скорости  происходит автоматически, то есть сама коробка учитывает нагрузку на ДВС, скорость движения ТС, положение педали газа, желание самого водителя резко ускориться или двигаться плавно и т.д.

В результате комфорт вождения автомобиля с АКПП значительно возрастает, передачи переключаются автоматически, мягко и плавно, двигатель, элементы трансмиссии и ходовой части защищены от сильных нагрузок. Более того, многие коробки автомат предусматривают возможность не только автоматического, но и ручного переключения передач.

Что касается минусов, они также имеются. Прежде всего, конструктивно АКПП является сложным и дорогостоящим агрегатом, отличается сниженной ремонтопригодностью и ресурсом по сравнению с механическими (ручными) КПП. Автомобиль с  данным типом КПП  расходует больше топлива, автоматическая коробка отдает меньше крутящего момента на колеса, так как КПД коробки автомат несколько снижен.

Также наличие в автомобиле автоматической трансмиссии накладывает на водителя определенные ограничения. Например, коробку автомат нужно прогревать перед поездкой, желательно избегать постоянных резких стартов и слишком интенсивного торможения.

На машине с автоматической коробкой нельзя буксовать, не допускается буксировка автомобиля с коробкой автомат на высокой скорости на большие расстояния без вывешивания ведущих колес и т.д. Еще добавим, что такую коробку сложнее и дороже обслуживать.   

Итак, даже с учетом определенных недостатков, автоматическая гидромеханическая   коробка по ряду причин долгое время оставалась наиболее распространенным решением для изменения крутящего момента среди других типов автоматических трансмиссий.

Прежде всего, даже с учетом того, что ресурс и производительность таких коробок ниже, чем у «механики», гидромеханическая коробка передач достаточно надежна и долговечна. Теперь давайте рассмотрим устройство АКПП.

Как работает АКПП устройство и принцип работы коробки-автомат

Автоматическая коробка передач состоит из следующих базовых элементов:

  • Гидротрансформатор. Устройство выполняет функцию сцепления по аналогии с МКПП, однако для перехода на ту или иную передачу не требуется участия водителя;
  • Планетарный ряд, который аналогичен блоку шестерен в ручной «механике» и позволяет изменять передаточное отношение при переключении передач;
    Тормозная лента и фрикционы (передний, задний фрикцион)  позволяют  плавно и своевременно переключать передачи;
  • Управление АКПП. Данный узел включает в себя маслосборник (поддон коробки), шестеренчатый насос, а также клапанную коробку;

Управление коробкой автомат производится при помощи селектора. Как правило, АКПП имеют следующие основные режимы:

  • Режим Р – парковка;
  • Режим R – движение задним ходом;
  • Режим N –нейтральная передача;
  • Режим D –езда вперед с автоматическим переключением передач;

Также могут иметься и другие режимы. Например, режим L2 означает, что включаться будет только первая и вторая передачи при движении вперед, режим L1 указывает на включение только первой передачи, режим S следует понимать как спортивный, могут иметься различные «зимние» режимы и т.д.

Дополнительно может быть реализована имитация ручного управления АКПП, то есть водитель может повышать или понижать передачи самостоятельно (вручную). Еще добавим, что коробка автомат также зачастую имеет режим kick-down (кик-даун), который позволяет автомобилю резко разгоняться при такой необходимости.

Срабатывает режим «кик-даун» в том случае, когда водитель резко нажимает на газ, после чего коробка быстро переходит на пониженные передачи, тем самым позволяя раскрутить двигатель до высоких оборотов.

Как видно, коробка — автомат фактически состоит из гидротрансформатора, механической коробки передач, а также системы управления, что в совокупности и образует гидромеханическую коробку. Давайте рассмотрим ее устройство.

Гидротрансформатор необходим для того, чтобы передавать и изменять крутящий момент от двигателя на коробку. Также гидротрансформатор уменьшает вибрации. Устройство гидротрансформатора предполагает наличие насосного, турбинного и реакторного колеса.

Также в гидротрансформаторе имеется блокировочная муфта и муфта свободного хода. Гидротрансформатор (ГДТ, часто в обиходе называется «бублик») является частью АКПП, однако имеет отдельный корпус из прочного материала, заполненный рабочей жидкостью.

Насосное колесо ГДТ присоединено к коленвалу двигателя. Турбинное колесо связано с самой коробкой передач. Между турбинным и насосным колесом также присутствует реакторное колесо, которое является неподвижным. Каждое из колес гидротрансформатора имеет лопасти, которые отличаются по своей форме. Между лопастями реализованы каналы, через которые проходит трансмиссионная жидкость (трансмиссионное масло, ATF, от  англ. Automatic Transmissions Fluid).

Блокировочная муфта необходима для блокировки гидротрансформатора в некоторых режимах работы. Обгонная муфта или муфта свободного хода отвечает за то, чтобы жестко закрепленное реакторное колесо получило возможность вращаться в противоположную сторону.

Теперь давайте рассмотрим, как работает гидротрансформатор. Его работа основана на замкнутом цикле и заключается в том, что от насосного колеса трансмиссионная жидкость подается на турбинное колесо. Затем поток  жидкости поступает к реакторному колесу.

Лопасти реактора сконструированы так, чтобы усиливать скорость потока жидкости АТФ. Затем ускоренный поток перенаправляется на насосное колесо, заставляя его вращаться с большей скоростью Результат — увеличение величины крутящего момента. Стоит добавить, что максимальный момент достигается при вращении гидротрансформатора  на самой малой скорости.

Когда раскручивается коленвал двигателя, происходит выравнивание угловых скоростей  насосного и турбинного колеса, при этом поток трансмиссионной жидкости изменяет направление. Затем происходит срабатывание муфты свободного хода, после чего начинает вращаться реакторное колесо. В этом случае гидротрансформатор переходит в режим гидромуфты, то есть происходит передача только крутящего момента.

Дальнейший набор скорости приводит к блокировке гидротрансформатора (блокировочная  муфта замкнута), в результате чего происходит прямая передача крутящего момента от мотора к коробке. При этом блокировка ГДТ происходит на разных передачах.

Следует отметить, что  в современных автоматических коробках передач реализован режим работы с проскальзыванием муфты блокировки гидротрансформатора. Такой режим исключает полную блокировку гидротрансформатора.

Данный  режим работы возможно реализовать в том случае, если условия соответствующие, то есть когда нагрузка и скорость подходят для его активации. Главной же задачей проскальзывания муфты становится более интенсивный разгон автомобиля, снижение расхода горючего, более мягкое и плавное включение передач.

Сама автоматическая коробка передач (АКПП), как и механическая, ступенчато изменяет крутящий момент при движении машины вперед, а также позволяет двигаться назад при включении задней передачи.

При этом в автоматических коробках обычно используется планетарный редуктор. Данное решение компактное, позволяет реализовать эффективную работу. Например, МКПП зачастую имеет два планетарных редуктора, которые соединены последовательно и работают совместно.

Объединение редукторов делает возможным получить необходимое число ступеней (скоростей) в коробке. Простые АКПП имеют четыре ступени (четырехступенчатый автомат), тогда как современные решения могут иметь шесть, семь, восемь, или даже девять  ступеней.

Планетарный редуктор включает в себя несколько последовательных планетарных передач. Такие передачи образуют планетарный ряд. Каждая из планетарных передач включает:

  • солнечную шестерню;
  • сателлиты;
  • коронную шестерню;
  • водило;

Возможность изменить крутящий момент и передать вращение становится доступной в том случае, когда происходит блокировка элементов планетарного ряда. Заблокирован может быть один или два элемента (солнечная или коронная шестерня, водило).

Если заблокирована коронная шестерня, тогда происходит увеличение передаточного числа. Если же солнечная шестерня неподвижна, тогда передаточное отношение будет уменьшено. Заблокированное водило означает, что происходит смена направления вращения.

За саму блокировку отвечают фрикционные муфты (фрикционы), а также тормоз. Муфты блокирует детали планетарного ряда между собой, тогда как тормоз удерживает нужные элементы редуктора благодаря соединению с корпусом КПП. В зависимости от конструкции той или иной АКПП, могут быть использованы ленточный или многодисковый тормоз.

Замыкание муфт и тормозов происходит благодаря гидроцилиндрам. Управление такими гидроцилиндрами реализовано из специального модуля (распределительный модуль).

Еще в общей конструкции автоматической коробки может присутствовать обгонная муфта, задачей которой становится удерживание водило, что позволяет предотвратить его вращение в противоположную сторону. Получаются, передачи в АКПП переключаются благодаря фрикционам и тормозам.

Что касается принципов работы АКПП, коробка работает по заданному алгоритму включения и выключения фрикционов и тормозов. Система управления такими включениями и выключениями на современных коробках электронная,  то есть имеет селектор (рычаг), датчики и ЭБУ коробкой передач.

Блок управления автоматической коробкой передач интегрирован в ЭСУД и тесно связан с блоком управления двигателем. По аналогии с ЭБУ двигателем, блок управления АКПП также взаимодействует с различными датчиками, которые передают на него сигналы о частоте вращения КПП, температуре трансмиссионной жидкости, положении педали газа, режимах установки селектора и т.д.

ЭБУ коробкой передач производит обработку полученных сигналов, затем отправляет команды на исполнительные устройства в распределительном модуле. В результате коробка определяет, какую передачу включить в тех или иных условиях (повышенную или пониженную).

При этом нет четкого заданного алгоритма, то есть точка перехода на разные передачи «плавающая» и определяется самим ЭБУ коробкой. Такая особенность позволяет системе работать более гибко.

Основные элементы автоматической трансмиссии

Перед началом движения насосное колесо вращается, реакторное и турбинное остаются в неподвижном состоянии. Реакторное колесо закреплено на вале посредством обгонной муфты, в связи с чем может вращаться только в одну сторону. Когда водитель включает передачу, нажимает на педаль газа – обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает колесо турбинное.

Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток этой жидкости, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом, при помощи реактора возрастает крутящий момент, что и требуется транспортному средству, набирающему разгон.

Когда автомобиль разогнался, и начал двигаться с постоянной скоростью, то насосное и турбинное колёса вращаются примерно с одинаковыми оборотами. Причём поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Возрастания крутящего момента не происходит, и гидротрансформатор переходит в равномерный режим гидромуфты.

Если же сопротивление движению автомобиля начало возрастать (к примеру, автомобиль начал ехать на подъём, в гору), то скорость вращения ведущих колёс, а, соответственно, и турбинного колеса, падает. В этом случае потоки масла снова затормаживают реактор – и крутящий момент возрастает. Таким образом, производится автоматическое регулирование крутящего момента, в зависимости от изменений в режиме движения транспортного средства.

Отсутствие жёсткой связи в гидротрансформаторе имеет как достоинства, так и недостатки. Плюсы состоят в том, что крутящий момент изменяется плавно и бесступенчато, демпфируются крутильные колебания и рывки, передаваемые от двигателя к трансмиссии. Минусы состоят, прежде всего, в невысоком КПД,  поскольку часть полезной энергии попросту теряется при «перелопачивании» масляной жидкости и расходуется на привод насоса АКПП, что, в конечном итоге, приводит к увеличению расхода топлива.

Но для сглаживания данного недостатка в гидротрансформаторах современных АКПП применяется режим блокировки. При установившемся режиме движения на высших передачах автоматически включается механическая блокировка колёс гидротрансформатора, то есть он начинает выполнять функцию обычного классического механизма сцепления.

Читать далее:  Перетяжка руля автомобиля своими руками

При этом обеспечивается жёсткая непосредственная связь двигателя с ведущими колёсами, как в механической трансмиссии. На некоторых АКПП включение режима блокировки предусмотрено и на низших передачах тоже. Движение с блокировкой является наиболее экономичным режимом работы коробки-«автомата». А при повышении нагрузки на ведущих колесах блокировка автоматически выключается.

При работе гидротрансформатора происходит значительный нагрев рабочей жидкости, вот почему в конструкции автоматических коробок предусматривается система охлаждения с радиатором, который либо встраивается в радиатор двигателя, либо устанавливается отдельно.

Автоматическая коробка передач состоит из следующих основных узлов: гидротрансформатора, планетарного ряда, системы управления и контроля. Коробка переднеприводных автомобилей дополнительно содержит внутри корпуса главную передачу и дифференциал.

Гидротрансформатор

Чтобы понять, как работает АКПП, необходимо представлять себе, что такое гидромуфта и планетарная передача. Гидромуфта – устройство, состоящее из двух лопастных колес, установленных в одном корпусе, который заполнен специальным маслом. Одно из колес, называемое насосным, соединяется с коленвалом двигателя, а второе, турбинное, – с трансмиссией.

При вращении насосного колеса отбрасываемые им потоки масла раскручивают турбинное колесо. Такая конструкция позволяет передавать крутящий момент примерно в соотношении 1:1. Для автомобиля такой вариант не подходит, так как нам нужно, чтобы крутящий момент изменялся в широких пределах. Поэтому между насосным и турбинным колесами стали устанавливать еще одно колесо — реакторное, которое в зависимости от режима движения автомобиля может быть либо неподвижно, либо вращаться.

Когда реактор неподвижен, он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем большее воздействие оно оказывает на турбинное колесо. Таким образом момент на турбинном колесе увеличивается, т.е. мы его трансформируем. Поэтому устройство с тремя колесами это уже не гидромуфта, а гидротрансформатор.

Планетарная передача

Но и гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в нужных нам пределах. Да и обеспечить движение задним ходом ему не под силу. Поэтому к нему присоединяют набор из отдельных планетарных передач с разным передаточным коэффициентом — как бы несколько одноступенчатых КПП в одном корпусе.

Планетарная передача представляет собой механическую систему, состоящую из нескольких шестерён – сателлитов, вращающихся вокруг центральной шестерни. Сателлиты фиксируются вместе с помощью водила. Внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, как планеты вокруг Солнца (отсюда и название- планетарная передача), внешняя шестерня – вокруг сателлитов. Различные передаточные отношения достигаются путем фиксации различных деталей относительно друг друга.

Переключение передач осуществляется системой управления, которая на ранних моделях была полностью гидравлической, а на современных на помощь гидравлике пришла электроника.

Собирается коробка в алюминиевом кожухе, называемом картером. В нем располагаются главные компоненты автоматической трансмиссии:

  1. Гидротрансформатор, выполняющий роль сцепления, но не требующий со стороны водителя производить непосредственное им управление.
  2. Планетарный ряд, изменяющий передаточное отношение при переключении.
  3. Задний, передний фрикционы, тормозная лента, непосредственно осуществляющие переключение передач.
  4. Устройство управления.

Схема АКПП

Устройство АКПП достаточно сложное и состоит из следующих основных элементов:

  • гидротрансформатор;
  • планетарный механизм;
  • блок управления АКПП (TCU);
  • фрикционные муфты;
  • обгонная муфта;
  • гидроблок;
  • ленточный тормоз;
  • масляный насос;
  • корпус.

Гидротрансформатор представляет собой корпус, заполненный специальной рабочей жидкостью ATF, и предназначен для передачи крутящего момента от двигателя к коробке передач. Фактически он заменяет сцепление. В его состав входят насосное, турбинное и реакторное колеса, блокировочная муфта и муфта свободного хода.

Колеса оснащены лопастями с каналами для прохода рабочей жидкости. Блокировочная муфта необходима для блокировки гидротрансформатора в конкретных режимах работы автомобиля. Муфта свободного хода (обгонная муфта) необходима для вращения реакторного колеса в противоположную сторону. Более подробно про гидротрансформатор можно почитать здесь.

Планетарный механизм АКП включает в себя планетарные ряды, валы, барабаны с фрикционными муфтами, а также обгонную муфту и ленточный тормоз.

Механизм переключения скоростей в АКПП достаточно сложен, и, по сути дела, работа трансмиссии состоит в выполнении некоторого алгоритма включения и выключения муфт и тормозов посредством давления жидкости.

Как работает АКПП устройство и принцип работы коробки-автомат

Планетарный ряд, точнее блокировка одного из его элементов (солнечная шестерня, саттелиты, коронная шестерня, водило), обеспечивает передачу вращения и изменение крутящего момента. Элементы, входящие в планетарный ряд, блокируются при помощи обгонной муфты, ленточного тормоза и фрикционных муфт.

Пример гидравлической схемы АКПП

Блок управления АКПП может быть гидравлическим (уже не применяется) и электронным (ЭБУ АКПП). Современная гидромеханическая трансмиссия оснащается только электронным блоком управления. Он обрабатывает сигналы датчиков и формирует управляющие сигналы на исполнительные устройства (клапаны) гидроблока, обеспечивающие работу фрикционных муфт, а также управляющие потоками рабочей жидкости.

В зависимости от этого жидкость под давлением направляется в ту или иную муфту, включая определенную передачу. TCU также управляет блокировкой гидротрансформатора. При неисправности блок TCU обеспечивает функционирование КПП в «аварийном режиме». Селектор АКПП отвечает за переключение режимов работы КПП.

В автоматической коробке применяются следующие датчики:

  • датчик частоты вращения на входе;
  • датчик частоты вращения на выходе;
  • датчик температуры масла АКПП;
  • датчик положения рычага селектора;
  • датчик давления масла.

Подробнее про датчики АКПП можно почитать тут.

Как работает АКПП устройство и принцип работы коробки-автомат

Автоматическая коробка передач условно состоит из трёх основных частей:

  1. Механической. В её обязанности входит изменение скорости транспортного средства, а также непосредственное переключение скоростей.
  2. Гидравлической. Данная часть АКПП передаёт крутящий момент между составными частями КП без каких-либо действий водителя.
  3. Электронной. Данная составляющая является мозгом коробки передач, который следит за работой механической и гидравлической систем, а также передаёт сигналы к другим узлам автомобиля.

Узнайте, как пользоваться коробкой-автомат; что такое овердрайв, типтроник, мультилок и соленоиды.

Составные части автоматической КП:

  • гидротрансформатор. В основе работы транспортного средства лежит двигатель, без которого любые манипуляции невозможны. То же самое можно сказать и про трансмиссию, сердцем которой является гидротрансформатор. Именно он занимается преобразованием и передачей крутящего момента и мощности, необходимых для движения транспортного средства. Гидротрансформатор является полной заменой сцепления. Механизм состоит из турбины и насоса. Чтобы жидкость с наименьшими потерями объёма и энергии перетекала из турбины к насосу, эти два компонента максимально приближены друг к другу. Данная характеристика также объясняет небольшие размеры гидротрансформатора. Более того, существует режим блокировки, который полностью сцепляет турбину и насос, что значительно минимизирует потери;
  • планетарный ряд. Это часть трансмиссии, которая выполняет функции, аналогичные механической КП. Планетарный ряд позволяет передавать крутящий момент от гидротрансформатора к колёсам с помощью трансмиссионной жидкости;
  • тормозная лента, задний и передний фрикцион. Этот узел передаёт импульс двигателю, позволяя изменять передачи. Тормозная лента является элементом КП, позволяющим приостанавливать работу планетарного ряда, приводя ТС в неподвижное состояние.

Как работает система управления АКПП

Почему в АКПП в подавляющем большинстве случаев применяется планетарная передача, а не валы с шестернями, как в механической коробке? Планетарная передача более компактна, она обеспечивает более быстрое и плавное переключение скоростей без разрыва в передаче мощности двигателя. Планетарные передачи отличаются долговечностью, так как нагрузка передается несколькими сателлитами, что снижает напряжения зубьев.

В одинарной планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй — ведомым. Третий элемент при этом неподвижен.

Неподвижный Ведущий Ведомый Передача
Корона Солнце Водило Понижающая
Водило Солнце Повышающая
Солнце Корона Водило Понижающая
Водило Корона Повышающая
Водило Солнце Корона Реверс, понижающая
Корона Солнце Реверс, повышающая

Для получения прямой передачи необходимо зафиксировать между собой два любых элемента, которые будут играть роль ведомого звена, третий элемент при таком включении является ведущим. Общее передаточное отношение такого зацепления 1:1.

Как работает АКПП устройство и принцип работы коробки-автомат

Таким образом, один планетарный механизм может обеспечить три передачи для движения вперед (понижающую, прямую и повышающую) и передачу заднего хода.

Передаточные отношения одиночного планетарного ряда не дают возможности оптимально использовать крутящий момент двигателя. Поэтому необходимо соединение двух или трех таких механизмов. Существует несколько вариантов соединения, каждое из которых носит название по имени своего изобретателя.

Механизм Симпсона

Планетарный механизм Симпсона, состоящий из двух планетарных редукторов, часто называют двойным рядом. Обе группы сателлитов, каждая из которых вращается внутри своей коронной шестерни, объединены в единый механизм общей солнечной шестерней. Планетарный ряд такой конструкции обеспечивает три ступени изменения передаточного отношения.

Для получения четвертой, повышающей, передачи последовательно с рядом Симпсона установлен еще один планетарный ряд. Схема Симпсона нашла наибольшее применение в АКПП для заднеприводных автомобилей. Высокая надежность и долговечность при относительной простоте конструкции – вот ее неоспоримые достоинства.

Механизм Равинье

Планетарный ряд Равиньё иногда называют полуторным, подчеркивая этим особенности его конструкции: наличие одной коронной шестерни, двух солнечных и водила с двумя группами сателлитов. Главным преимуществом схемы Равиньё является то, что она позволяет получить четыре ступени изменения передаточного отношения редуктора.

Отсутствие отдельного планетарного ряда повышающей передачи позволяет сделать редуктор коробки очень компактным, что особенно важно для трансмиссий переднеприводных автомобилей. К недостаткам следует отнести уменьшение ресурса механизма приблизительно в полтора раза по сравнению с планетарным рядом Симпсона.

Это связано стем, что шестерни передачи Равиньё нагружены постоянно, на всех режимах работы коробки, в то время как элементы ряда Симпсона не нагружены во время движения на повышенной передаче. Второй недостаток – низкий КПД на пониженных передачах, приводящий к снижению разгонной динамики автомобиля и шумности работы коробки.

Как правильно пользоваться АКПП

Коробка передач Уилсона состоит из 3 планетарных редукторов. Коронная шестерня первого планетарного редуктора, водило второго редуктора, и коронная шестерня третьего постоянно соединены между собой, образуя единое целое. Кроме того, второй и третий планетарные редукторы имеют общую солнечную шестерню, которая приводит в действие передачи переднего хода. Схема Уилсона обеспечивает 5 передач вперед и одну заднего хода.

Планетарная передача Лепелетье объединяет в себе обыкновенный планетарный ряд и пристыкованный за ним планетарный ряд Равинье. Несмотря на простоту, такая коробка обеспечивает переключение 6 передач переднего хода и одну заднего. Преимуществом схемы Лепелетье является ее простая, компактная и имеющая небольшую массу конструкция.

Конструкторы постоянно совершенствуют АКПП, увеличивая количество передач, что улучшает плавность работы и экономичность автомобиля. Современные «автоматы» могут иметь до восьми передач.

Читать далее:  Система охлаждения двигателя описание и принцип работы

Системы управления АКПП бывают двух типов: гидравлические и электронные. Гидравлические системы используются на устаревших или бюджетных моделях, современные АКПП управляются электроникой.

Устройством «жизнеобеспечения» для любой системы управления является масляный насос. Его привод осуществляется непосредственно от коленвала двигателя. Масляный насос создает и поддерживает в гидравлической системе постоянное давление, независимо от частоты вращения коленвала и нагрузки на двигатель.

Момент переключения передач определяется по скорости автомобиля и нагрузке на двигатель. Для этого в гидравлической системе управления существуют два датчика: скоростной регулятор и клапан – дроссель или модулятор. Скоростной регулятор давления или гидравлический датчик скорости устанавливается на выходном валу АКПП.

Чем быстрее едет машина, тем больше открывается клапан, тем больше давление проходящей через этот клапан трансмиссионной жидкости. Предназначенный для определения нагрузки на двигатель клапан — дроссель соединяется тросом либо с дроссельной заслонкой (в бензиновых двигателях), либо с рычагом ТНВД (в дизелях).

В некоторых автомобилях для подачи давления на клапан – дроссель используется не трос, а вакуумный модулятор, который приводится в действие разряжением во впускном коллекторе (при увеличении нагрузки на двигатель разряжение падает). Таким образом, эти клапаны формируют давления, пропорциональные скорости движения автомобиля и загруженности двигателя.

Соотношение этих давлений и позволяет определять моменты переключения передач и блокировки гидротрансформатора. В «принятии решения» о переключении передачи участвует и клапан выбора диапазона, который соединен с рычагом селектора АКПП и, в зависимости от его положения, запрещает включение определенных передач.

Определение момента переключения передач

Как это происходит? Клапан переключения находится под давлением масла от скоростного регулятора давления с одной стороны и от клапана – дросселя с другой. Если машина ускоряется медленно, давление от гидравлического клапана скорости нарастает, что приводит к открытию клапана переключения. Поскольку педаль акселератора нажата не полностью, клапан – дроссель не создает большое давление на клапан переключения.

Если же машина ускоряется быстро, клапан – дроссель создает большее давление на клапан переключения, препятствуя его открытию. Чтобы преодолеть это противодействие, давление от скоростного регулятора давления должно превысить давление от клапана — дросселя, но это произойдет при достижении автомобилем более высокой скорости, чем при медленном разгоне.

Блок клапанов в сборе

муфты фрикционов и тормозные ленты, посредством которых осуществляется блокировка различных элементов планетарного ряда и, следовательно, включение (выключение) различных передач. Тормоз – это механизм, который осуществляет блокировку элементов планетарного ряда на неподвижный корпус АКПП. Фрикцион же блокирует подвижные элементы планетарного ряда между собой.

Электронная система управления так же, как и гидравлическая, использует для работы два основных параметра: скорость движения автомобиля и нагрузку на двигатель. Но для определения этих параметров используются не механические, а электронные датчики. Основными из них являются датчики: частоты вращения на входе коробки передач, частоты вращения на выходе коробки передач, температуры рабочей жидкости, положения рычага селектора, положения педали акселератора.

Кроме того, блок управления АКПП получает дополнительную информацию от блока управления двигателем и других электронных систем автомобиля (например, от АБС). Это позволяет более точно, чем в обычной АКПП, определять моменты переключений и блокировки гидротрансформатора. Программа переключения передач по характеру изменения скорости при данной нагрузке на двигатель может легко вычислить силу сопротивления движению автомобиля и ввести соответствующие поправки в алгоритм переключения, например, попозже включать повышенные передачи на полностью загруженном автомобиле.

АКПП с электронным управлением так же, как и простые гидромеханические коробки, используют гидравлику для включения муфт и тормозных лент, но каждый гидравлический контур управляется электромагнитным, а не гидравлическим клапаном.

Audi – Tiptronic, BMW – Steptronic. Благодаря электронике в современных АКПП стала доступна и возможность их «самообучения», т.е. изменение алгоритма переключений в зависимости от стиля вождения. Электроника предоставила широкие возможности для самодиагностики АКПП. И речь идет не только о запоминании кодов неисправностей. Программа управления, контролируя износ фрикционных дисков, температуру масла, вносит необходимые коррективы в работу АКПП.

Для того, чтобы принцип работы автоматической трансмиссии стал более понятным, мы условно разобьем ее на три части: механическая, электронная и гидравлическая.

История создания автоматической коробки передач

На следующем этапе в производство поступили автомобили с полуавтоматической трансмиссией. В них автоматизация направлена либо на самостоятельное переключение передач, либо на отказ от использования сцепления, что существенно облегчало вождение транспортного средства.

Знаете ли вы?Такую полуавтоматическую трансмиссию используют до сих пор на скутерах.

Последним этапом к переходу на автоматическую трансмиссию была система, предложенная разработчиками американской компании General Motors. В её основе лежала планетарная модель, ранее использовавшаяся на заводе «Форд», а также гидравлика, которая сама включалась в момент, когда необходимо изменить передачу. Оба принципа лежат в основе современной АКПП.

Механизм Симпсона

Один из основных механизмов коробки-автомата – это планетарный ряд. Первая серийная автомашина, оснащённая планетарной коробкой передач, была выпущена ещё в 1908 году, и это был «Форд Т». Хотя в целом та коробка переключения передач ещё не была полностью автоматической (от водителя «Форда Т» требовалось нажимать две ножных педали, первая из которых переводила с низшей на высшую передачу, а вторая включала задний ход), она уже позволяла значительно упростить управление, по сравнению с обычными КПП тех лет, без синхронизаторов.

Второй важный момент в становлении технологии будущих АКПП – это перевод управления сцеплением с водителя на сервопривод, воплощённый в 30-х годах ХХ века фирмой «Дженерал Моторс». Эти коробки переключения передач назывались полуавтоматическими. Первой полностью автоматической КПП стала внедрённая в производство в 30-х годах ХХ века планетарная электромеханическая коробка «Коталь». Она устанавливалась на французские автомобили забытых ныне марок «Деляж» и «Делайе» (существовали до 1953 и 1954 г. соответственно).

Об истории создания и совершенствования АКПП

Автомобиль «Деляж D8» – премиум-класс довоенной эпохи.

Другие автопромышленники в Европе также разрабатывали похожие системы фрикционов и тормозных лент. Вскоре подобные АКПП были реализованы в автомобилях ещё нескольких немецких и британских марок, известной и ныне здравствующей из которых является «Майбах».

Специалисты другой известной фирмы – американской «Крайслер» продвинулись далее других автопроизводителей, внедрив гидравлические элементы в конструкцию КПП, которые заменили сервоприводы и электромеханические элементы управления. Инженеры «Крайслера» разработали первые в истории гидротрансформатор и гидромуфту, которые имеются теперь в конструкции каждой автоматической коробки передач.

Автоматические коробки передач тех лет были очень дорогими и технически сложными механизмами. К тому же, не всегда отличавшимися надёжной и долговечной работой. Они могли выигрышно выглядеть только в эпоху несинхронизированных механических коробок передач, управление автомобилем с которыми было достаточно тяжёлым трудом, требующим от водителя хорошо отработанного навыка.

В конце 1980/1990-х годах у всех крупных автопроизводителей происходила компьютеризация систем управления двигателем. Аналогичные им системы стали применять и для управления переключением скоростей. Если прежние решения использовали только гидравлику и механические клапаны, то теперь потоками жидкости стали управлять соленоиды, контролируемые компьютером. Это сделало переключения плавнее и комфортнее, улучшило экономичность и повысило эффективность работы трансмиссии.

Кроме того, на некоторых автомобилях были внедрены «спортивные» и другие дополнительные режимы работы, возможность вручную управлять коробкой передач («Tiptronic» и т.п. системы). Появились первые пяти- и более ступенчатые АКПП. Совершенствование расходных материалов позволило на многих коробках-автоматах отменить процедуру замены масла в процессе эксплуатации автомобиля, поскольку ресурс залитого в её картер на заводе масла стал сравнимым с ресурсом самой коробки передач.

  • гидротрансформатора крутящего момента (он же – «гидродинамический трансформатор, ГДТ»);
  • планетарного механизма автоматического переключения передач; тормозной ленты, заднего и переднего фрикционов – устройств, что напрямую переключают передачи;
  • устройства управления (узла, состоящего из насоса, клапанной коробки и маслосборника).

Гидротрансформатор

Запуск двигателя с АКПП

Гидротрансформатор нужен для передачи крутящего момента от силового агрегата к элементам автоматической трансмиссии. Располагается между коробкой и мотором, и, таким образом, выполняет функцию сцепления. Гидротрансформатор наполнен рабочей жидкостью, которая улавливает и передает энергию двигателя в масляный насос, находящейся непосредственно в коробке.

Состоит гидротрансформатор состоит из больших колёс с лопастями, погружёнными в специальное масло. Передача крутящего момента осуществляется не механическим устройством, а при помощи масляных потоков и их давления. Внутри  гидротрансформатора расположены пара лопастных машин – центростремительная турбина и центробежный насос, а между ними – реактор, который ответственен за плавные и стабильные изменения крутящего момента на приводах к колёсам транспортного средства. Итак, гидротрансформатор не контактирует ни с водителем, ни со сцеплением (он «сам и есть» сцепление).

Гидротрансформатор

Насосное колесо соединяется с коленвалом двигателя, а турбинное, — с трансмиссией. При вращении насосного колеса отбрасываемые им потоки масла раскручивают турбинное колесо. Чтобы крутящий момент можно было изменять в широких диапазонах, между насосным и турбинным колёсами предусмотрено реакторное колесо.

Которое, в зависимости от режима движения автомобиля, может быть либо неподвижным, либо вращаться. Когда реактор неподвижен, он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем большее воздействие оно оказывает на турбинное колесо. Таким образом, момент на турбинном колесе увеличивается, т.е.  устройство его «трансформирует».

Но гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент во всех требуемых пределах. Да и обеспечить движение задним ходом он тоже не в силу. Для расширения этих возможностей к нему и присоединяется набор из отдельных планетарных передач с разным передаточным коэффициентом. Как бы несколько одноступенчатых КПП, собранных в одном корпусе.

Планетарная передача представляет собой механическую систему, состоящую из нескольких шестерён-сателлитов, которые вращаются вокруг центральной шестерни. Сателлиты фиксируются вместе при помощи круга-водила. Внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, как планеты вокруг Солнца (отсюда и название механизма – «планетарная передача»), внешняя шестерня вращается вокруг сателлитов. Различные передаточные отношения достигаются путем фиксации различных деталей относительно друг друга.

Тормозная лента, задний и передний фрикцион – напрямую производят переключения передач с одной на другую. Тормоз – это механизм, который производит блокировку элементов планетарного ряда на неподвижный корпус коробки-автомата. Фрикцион же блокирует подвижные элементы планетарного ряда между собой.

Читать далее:  Шевроле Нива 2018 в новом кузове цены комплектации фото видео тест-драйв || Шевроле Нива 2018 в новом кузове цены комплектации фото видео тест-драйв

Системы управления автоматических КПП бывают 2-х типов: гидравлическими и электронными. Гидравлические системы используются на устаревших или бюджетных моделях, и постепенно выводятся из употребления. А все современные коробки-«автоматы» управляются электроникой.

Устройством «жизнеобеспечения» для любой системы управления можно назвать масляный насос. Его привод осуществляется непосредственно от коленчатого вала двигателя. Масляный насос создаёт и поддерживает в гидравлической системе постоянное давление, независимо от частоты вращения коленчатого вала и нагрузок на двигатель.

Момент переключения передач определяется по скорости автомобиля и нагрузке на двигатель. Для этого в гидравлической системе управления предусмотрена пара датчиков: скоростной регулятор и клапан-дроссель, или модулятор. Скоростной регулятор давления или гидравлический датчик скорости устанавливается на выходном вале автоматической коробки.

Начало движения и остановка с АКПП

Чем быстрее едет транспортное средство, тем больше открывается клапан, и тем больше становится давление проходящей через этот клапан трансмиссионной жидкости. Предназначенный для определения нагрузки на двигатель клапан-дроссель соединяется тросом либо с дроссельной заслонкой (если речь идёт о бензиновом двигателе), либо с рычагом топливного насоса высокого давления (в дизельном моторе).

В некоторых автомобилях для подачи давления на клапан-дроссель используется не трос, а вакуумный модулятор, который приводится в действие разряжением во впускном коллекторе (при увеличении нагрузки на двигатель разряжение падает). Таким образом, эти клапаны создают такие давления, которые будут пропорциональными скорости движения автомобиля и загруженности его двигателя. Соотношение этих давлений и позволяет определять моменты переключения передач и блокировки гидротрансформатора.

В «ловле момента» переключения передачи принимает участие и клапан выбора диапазона, который соединен с селекторным рычагом АКПП и, в зависимости от его положения, разрешает либо запрещает включение определенных передач. Результирующее давление, которое создают клапан-дроссель и скоростной регулятор, вызывает срабатывание соответствующего клапана переключения. Причём, если машина ускоряется быстро, то система управления включит повышенную передачу позже, чем при разгоне спокойно-равномерном.

  • Р – паркинг, или парковочная блокировка: блокировка ведущих колёс (не взаимодействует со стояночным тормозом). Аналогично, как на «механике» машину оставляют «на скорости» при постановке на стоянку;
  • R – реверс, передача заднего хода (её всегда запрещено было активировать в момент движения автомобиля, а потом в конструкции предусмотрели соответствующую блокировку);
  • N – нейтралка, режим нейтральной передачи (активируется при непродолжительной стоянке или при буксировке);
  • D – драйв, движение передним ходом ( при этом режиме будет задействован весь передаточный ряд коробки, иногда – отсекаются две высшие передачи).

Режимы работы гидротрансформатора

По аналогии с МКПП, гидротрансформатор выполняет функции сцепления, а также регулирует КМ, с учетом частоты вращения и продуцируемой мощности двигателя.

Конструкция гидротрансформатора состоит из трех частей:

  • Центростремительная турбина;
  • Центробежный насос;
  • Направляющий аппарат-реактор;

За счет того, что турбина и насос максимально сближены друг с другом, рабочие жидкости находятся в постоянном движении. Именно благодаря этому удается добиться минимальных потерь энергии. К тому же, гидротрансформатор может похвастаться очень компактными размерами.

Стоит отметить, что коленвал напрямую связан с насосным колесом, а коробочный вал – с турбиной. Именно за счет этого, в гидротрансформаторе отсутствует жесткая связь между ведущими и ведомыми элементами. Рабочие жидкости передают энергию от мотора к трансмиссии, которая, в свою очередь, через лопатки насоса передает ее на лопасти турбины.

Движение масла в гидротрансформаторе

Перед началом движения насосное колесо вращается, реакторное и турбинное — неподвижны. Реакторное колесо закреплено на валу при помощи обгонной муфты, и поэтому может вращаться только в одну сторону. Включаем передачу, нажимаем педаль газа — обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает турбинное.

Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток масла, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом с помощью реактора увеличивается крутящий момент, что и требуется при разгоне автомобиля.

Когда автомобиль разогнался, и движется с постоянной скоростью, насосное и турбинное колеса вращаются примерно с одинаковыми оборотами. При этом поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Увеличения крутящего момента не происходит, гидротрансформатор переходит в режим гидромуфты.

Если же сопротивление движению автомобиля возросло (например, автомобиль едет в гору), скорость вращения ведущих колес, а, соответственно, и турбинного колеса падает. В этом случае потоки масла опять останавливают реактор — крутящий момент возрастает. Таким образом осуществляется автоматическое регулирование крутящего момента в зависимости от режима движения.

Отсутствие жесткой связи в гидротрансформаторе имеет свои достоинства и недостатки. Плюсы: крутящий момент изменяется плавно и бесступенчато, демпфируются крутильные колебания и рывки, передаваемые от двигателя к трансмиссии. Минусы — низкий КПД, так как часть энергии теряется при «перелопачивании масла» и расходуется на привод насоса АКПП, что, в конечном итоге, приводит к увеличению расхода топлива.

Для устранения этого недостатка в гидротрансформаторе применяется режим блокировки. При установившемся режиме движения на высших передачах автоматически включается механическая блокировка колес гидротрансформатора, то есть он начинает выполнять функцию обычного «сухого» сцепления. При этом обеспечивается жесткая непосредственная связь двигателя с ведущими колесами, как в механической трансмиссии.

При работе гидротрансформатора происходит значительный нагрев рабочей жидкости, поэтому в конструкции АКПП предусматривается система охлаждения с радиатором, который или встраивается в радиатор двигателя, или устанавливается отдельно.

Гидромуфта

Если говорить о гидромуфте, то ее принцип работы очень похож – она также передает КМ, не влияя на его интенсивность.

Гидротрансформатор оснащен реактором в первую очередь для того, чтобы изменять КМ. По сути, это такое же колесо с лопатками, разве что жестче посаженное и менее маневренное. По нему масло возвращается из турбины в насос. Некоторые особенности имеют лопатки реактора, каналы которых постепенно сужаются. За счет этого скорость движения рабочих жидкостей существенно увеличивается.

Планетарные ряды

Гидротрансформатор может увеличивать крутящий момент, но лишь до определенного предела. Устройство автоматической коробки передач для более значимого увеличения момента, например, при преодолении подъемов, а также для движения задним ходом предусматривает планетарные ряды. Планетарная передача также обеспечивает ровное переключения скоростей при движении без потери мощности мотора. Благодаря ей переключение происходит без толчков, случающихся при работе обычной трансмиссии.

Планетарный ряд включает следующие элементы:

  • солнечную шестерню;
  • сателлиты;
  • эпицикл;
  • водило.

Планетарным ряд называются из-за того, что фрикционные колеса, вращающиеся одновременно вокруг своих осей и перемещающиеся вместе с этими осями, очень напоминают планеты солнечной системы. От их взаимного положения зависит, какая в данный момент включена передача.

Механизм Симпсона

Из чего состоит АКПП?

Распространенные ошибки при использовании АКПП

Гидротрансформатор – взаимодействует со сцеплением, и не контактирует с водителем.

Планетарный ряд – взаимодействует с шестернями в коробке, и при переключении передач изменяет конфигурацию трансмиссии.

Тормозная лента, задний и передний фрикцион – напрямую переключают передачи.

Устройство управления – это узел, который состоит из насоса, клапанной коробки и маслосборника.

Гидроблок – система клапанных каналов, которые контролируют и управляют нагрузкой двигателя.

Гидротрансформатор – предназначен для передачи крутящего момента от силового агрегата до элементов автоматической трансмиссии. Расположен он между коробкой и мотором, и таким образом выполняет функцию сцепления. Он наполнен рабочей жидкостью, которая улавливает и передает усилия двигателя в масляный насос, находящейся непосредственно в коробку.

Что касается масляного насоса, то он уже передает рабочую жидкость в гидротрансформатор, создавая, таким образом, наиболее оптимальное давление в системе. Поэтому, миф о том, что автомобиль с коробкой-автомат можно завести без стартера – чистая ложь.

Как работает АКПП устройство и принцип работы коробки-автомат

Шестеренчатый насос получает энергию прямо от двигателя, из чего можно сделать вывод, что при выключенном моторе давление в системе полностью отсутствует, даже если рычаг переключения АКПП находиться не в начальном состоянии. Поэтому, принудительное вращение карданного вала не сможет завести двигатель.

Планетарный ряд – используется зачастую в автоматической трансмиссии, так как считается более современным и технологичным, нежели параллельный вал, используемый в механике.

Части фрикциона – поршень заставляет двигаться чрезмерное давление масла. Сам поршень очень плотно прижимает ведущие элементы к ведомым, заставляя их вращаться как единое целое, и передавать КМ ко втулке. Стоит отметить, что в АКПП находится сразу несколько таких планетарных механизмов.

Фрикционные диски передают КМ непосредственно колесам автомобиля.

Тормозная лента – используется для блокировки элементов планетарного механизма.

Гидроблок – один из наиболее сложных механизмов в АКПП, который называют «мозгами трансмиссии». Стоит отметить, что ремонт данного элемента очень дорогостоящий.

Как работает система управления АКПП

АКПП в разрезе

Управление автоматической трансмиссией осуществляет селектор АКПП. Режимы работы автоматической трансмиссии зависят от перемещения рычага в определенное положение. В автомате доступны следующие режимы:

  1. Р — Parking. Используется при парковке. В данном режиме механически блокируется выходной вал трансмиссии.
  2. R — Reverse. Используется для включения передачи заднего хода.
  3. N — Neutral. Нейтральный режим.
  4. D – Drive. Движение вперед в режиме автоматического переключения скоростей.
  5. M — Manual. Режим ручного переключения скоростей.

Планетарный механизм. Тормозная лента. Фрикционы

В современных автоматических трансмиссиях с большим числом рабочих диапазонов могут использоваться дополнительные режимы работы:

  • (D), или O/D— овердрайв  —  «экономичный» режим движения, при котором возможно автоматическое переключение на повышающую передачу;
  • D3, или O/D OFF— расшифровывается как «отключение овердрайва», это активный режим движения;
  • (либо цифра 2) — диапазон пониженных передач (первая и вторая, либо только вторая передача) , «зимний режим»;
  • (либо цифра 1) — второй диапазон пониженных передач (только первая передача).

Схема режимов АКПП

Также имеются и  дополнительные кнопки, характеризующие режимы работы АКП:

  • кнопка Sport, или Power — переключение передач происходит на более высоких оборотах двигателя;
  • кнопка Winter, или Snow — движение с места происходит со второй или третьей передачи;
  • кнопка Shift lock (шифт лок) — возможность разблокирования селектора при остановленном двигателе.

В некоторых коробках есть режим «кик даун» (kick-down). Режим «кик даун» предполагает резкое ускорение транспортного средства путем переключения на пониженную передачу. В некоторых случаях режим «кик даун» запрещен при отключении режима овердрайв.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
AutoJiza
Adblock
detector